Polynomial aspects of codes, matroids and permutation groups

نویسنده

  • Peter J. Cameron
چکیده

Index 74 Preface The three subjects of the title (codes, matroids, and permutation groups) have many interconnections. In particular, in each case, there is a polynomial which captures a lot of information about the structure: we have the weight enumerator of a code, the Tutte polynomial (or rank polynomial) of a matroid, and the cycle index of a permutation group. With any code is associated a matroid in a natural way. A celebrated theorem of Curtis Greene asserts that the weight enumerator of the code is a specialisation of the Tutte polynomial of the matroid. It is less well known that with any code is associated a permutation group, and the weight enumerator of the code is the same (up to normalisation) as the cycle index of the permutation group. There is a class of permutation groups, the so-called IBIS groups, which are closely associated with matroids. More precisely, the IBIS groups are those for which the irredundant bases (in the sense of computational group theory) are the bases of a matroid. The permutation group associated with a code is an IBIS group, and the matroid associated to the group differs only inessentially from the matroid obtained directly from the code. For some IBIS groups, the cycle index can be extracted from the Tutte polynomial of the matroid but not vice versa; for others, the Tutte polynomial can be obtained from the cycle index but not vice versa. This leads us to wonder whether there is a more general polynomial for IBIS groups which " includes " both the Tutte polynomial and the cycle index. Such a polynomial (the Tutte cycle index) is given in the last chapter of these notes (an expanded version of [5]). Whether or not there is a more general concept extending both matroids and arbitrary permutation groups, and giving rise to a polynomial extending both the Tutte polynomial and the cycle index, I do not know; I cannot even speculate what such a concept might be.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroids and Coxeter groups

The paper describes a few ways in which the concept of a Coxeter group (in its most ubiquitous manifestation, the symmetric group) emerges in the theory of ordinary matroids: • Gale’s maximality principle which leads to the Bruhat order on the symmetric group; • Jordan–Hölder permutation which measures distance between two maximal chains in a semimodular lattice and which happens to be closely ...

متن کامل

Notes on matroids and codes

The following expository article is intended to describe a correspondence between matroids and codes. The key results are that the weight enumerator of a code is a specialisation of the Tutte polynomial of the corresponding matroid, and that the MacWilliams relation between weight enumerators of a code and its dual can be obtained from matroid duality. It also provides a general introduction to...

متن کامل

Cycle index generalises weight enumerator

With every linear code is associated a permutation group whose cycle index is the weight enumerator of the code (up to normalisation). There is a class of permutation groups (the IBIS groups) which includes the groups obtained from codes as above. With every IBIS group is associated a matroid; in the case of a code group, the matroid differs only trivially from that which arises from the code. ...

متن کامل

Constructions for Permutation Codes in Powerline Communications

A permutation array (or code) of length n and distance d is a set G of permutations from some fixed set of n symbols such that the Hamming distance between each distinct x; y [G is at least d. One motivation for coding with permutations is powerline communication. After summarizing known results, it is shown here that certain families of polynomials over finite fields give rise to permutation a...

متن کامل

Lattice path matroids: enumerative aspects and Tutte polynomials

Fix two lattice paths P and Q from ð0; 0Þ to ðm; rÞ that use East and North steps with P never going above Q: We show that the lattice paths that go from ð0; 0Þ to ðm; rÞ and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003